DIFFERENT APPROACHES TO VALUATION OF SHARES

Ram Kumar Kakani XLRI Jamshedpur

Stocks and Stock Market

- Equity Shares: Ownership shares in a publicly held corporation
- Secondary Market: Market in which already issued securities are traded by investors
- Dividend: Periodic cash distribution from the firm to the shareholders
- Book Value: Net Worth of the firm according to the balance sheet

Stocks and Stock Market

- Liquidation Value: Net proceeds that would be realized by selling the firm's assets and paying off its creditors
- P/E Ratio: Price per share divided by earnings per share (EPS)
- P/BV Ratio: Price per share divided by book value per share (BV)
- Market Value Balance Sheet: Financial statement that uses market value of assets and liabilities

Valuing Common Equity Shares

- Expected Return: The percentage yield that an investor forecasts from a specific investment over a set period of time.
- This rate is also known as the <u>opportunity cost</u> of capital

What do you earn when you buy shares?

Dividend Yield + Capital Appreciation (??)

Valuing Common Equity Shares

What do you earn when you buy shares?

- Dividend Yield + Capital Appreciation (??)
- Dividend Discount Models
 - 2-year Model
- Perpetual Growth Model
- Constant Growth V = D_i/(k_e- g)
- No Growth
- Growth Phases

Valuation ...

- Dividend Discount Model: Computation of today's share price which states that share value equals the present value of all expected future dividends
 - It is the oldest discounted cash flow model in practice

Dividend Valuation Model

Basic dividend valuation model accounts for the PV of all future dividends.

$$V = \frac{Div_1}{(1 + k_e)^1} + \frac{Div_2}{(1 + k_e)^2} + ... + \frac{Div_\infty}{(1 + k_e)^\infty}$$

$$= \sum_{t=1}^{\infty} \frac{Div_t}{(1 + k_e)^t}$$

Div_t: Cash dividend at time t

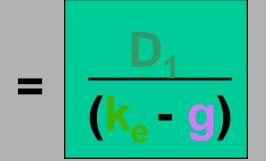
k_e: Equity investor's required return

Adjusted Dividend Valuation Model

The basic dividend valuation model adjusted for the future stock sale.

$$V = \frac{Div_1}{(1 + k_e)^1} + \frac{Div_2}{(1 + k_e)^2} + ... + \frac{Div_n + Price_n}{(1 + k_e)^n}$$

n: The year in which the firm's


shares are expected to be sold.

Price_n: The expected share price in year n.

Constant Growth Model

The constant growth model assumes that dividends will grow forever at the rate g.

$$V = \frac{D_0(1+)}{(1+k_e)^1} + \frac{D_0(1+)^2}{(1+k_e)^2} + ... + \frac{D_0(1+)^\infty}{(1+k_e)^\infty}$$

D₁: Dividend paid at time 1.

: The constant growth rate.

k_e: Investor's required return.

No. of Shares (in crore)

Book value per Share (Rs)

Source: www.lndiabulls.com (on 27-01-2009)

Adjusted EPS (Rs)

Dvdnd per Share (Rs)

Net Profit Margin (%)

Lt Debt Equity

Lets Value			
Financials Rs (in Crores)			
For the year	803	703	603
Operating Income	2720	2597	2743
Net Profit	204	151	203
Net Worth	1140	956	927

41.6

4.9

27.4

1.8

7.5

1.7

41.6

3.3

24.5

1.8

5.8

1.2

41.6

4.1

23.0

1.8

7.4

0.6

503

2679

221

789

40.6

3.5

20.3

1.8

8.2

1.1

403

2218

125

686

40.6

2.9

18.1

1.6

5.6

1.4

303

1949

89

555

40.6

2.2

16.9

1.5

4.6

1.7

Lets Value Chambal Fertilisers

LCLS Valu	ic charribar	
Financials Rs (in Crores)		
	Chambal Fertilisers an	d Chemicals Limited

703

2597

151

956

41.6

3.3

24.5

1.8

5.8

1.2

13.3

Rs. 36.5

603

2743

203

927

41.6

4.1

23.0

1.8

7.4

0.6

17.8

Rs. 1,519 Crores

503

2679

221

789

40.6

3.5

20.3

1.8

8.2

1.1

403

2218

125

686

40.6

2.9

1.6

5.6

1.4

15.9

18.1

303

1949

89

555

40.6

2.2

16.9

1.5

4.6

1.7

13.0

803

2720

204

1140

41.6

4.9

27.4

1.8

7.5

1.7

17.9

For the year

Net Profit

Net Worth

Operating Income

Adjusted EPS (Rs)

Dvdnd per Share (Rs)

Net Profit Margin (%)

Return on Equity (%)

Current Market Price Per Share

Source: www.Indiabulls.com (on 27-01-2009)

Current Market Capitalization

Lt Debt Equity

No. of Shares (in crore)

Book value per Share (Rs)

Constant Growth Model Example

Chambal Fertilisers & Chemicals Limited (CFCL), listed on BSE, has an expected growth rate of 8%. Each common equity share just received an annual Rs. 1.80 dividend per share. The appropriate discount rate is 13%. What is the value of the above shares?

$$D_1$$
 = Rs. 1.80 (1 + .08)
 V_{CF} = D_1 / (k_e - g) = D_1 /(.13 - .08)
= Rs. 38.9

Lets	V 2		
LCU	Va	<u>iuc</u>	

<u>IIUC III</u>					
Mar.08	Mar.07	Mar.06	Mar. 05	Mar. 04	Mar. 03
121	130	114	104	111	134
25	25	27	24	22	19
183	158	193	134	121	105
2.3	2.3	2.3	2.3	2.3	2.3
14.4	11.1	11.9	10.4	10.3	10.7
80.3	69.4	84.6	75.2	67.2	58.3
2.3	2.3	2.3	2.3	2.0	2.0
21.0	19.4	23.3	22.2	18.2	14.2
4.6	4.4	3.2	3.0	2.9	3.0
n (on 27-01-2	(909)				
	Mar.08 121 25 183 2.3 14.4 80.3 2.3 21.0 4.6	Mar.08 Mar.07 121 130 25 25 183 158 2.3 2.3 14.4 11.1 80.3 69.4 2.3 2.3 21.0 19.4	Mar.08 Mar.07 Mar.06 121 130 114 25 25 27 183 158 193 2.3 2.3 2.3 14.4 11.1 11.9 80.3 69.4 84.6 2.3 2.3 2.3 21.0 19.4 23.3 4.6 4.4 3.2	Mar.08 Mar.07 Mar.06 Mar. 05 121 130 114 104 25 25 27 24 183 158 193 134 2.3 2.3 2.3 2.3 14.4 11.1 11.9 10.4 80.3 69.4 84.6 75.2 2.3 2.3 2.3 2.3 21.0 19.4 23.3 22.2 4.6 4.4 3.2 3.0	Mar.08 Mar.07 Mar.06 Mar. 05 Mar. 04 121 130 114 104 111 25 25 27 24 22 183 158 193 134 121 2.3 2.3 2.3 2.3 2.3 14.4 11.1 11.9 10.4 10.3 80.3 69.4 84.6 75.2 67.2 2.3 2.3 2.3 2.3 2.0 21.0 19.4 23.3 22.2 18.2 4.6 4.4 3.2 3.0 2.9

Lets Value	First Le	easin	g			
ancials Rs (in Crores)						
	First Leasin	First Le	easing C	ompany	of India	
the year	Mar.08	Mar.07	Mar.06	Mar. 05	Mar. 04	

121

25

183

2.3

14.4

80.3

2.3

21.0

4.6

17.9

130

25

158

2.3

11.1

69.4

2.3

19.4

4.4

Rs. 64 Crores

16.0

Rs. 28.1

114

27

193

2.3

11.9

84.6

2.3

23.3

3.2

14.1

104

24

134

2.3

10.4

75.2

2.3

22.2

3.0

13.8

Mar. 03

134

19

105

2.3

10.7

58.3

2.0

14.2

3.0

18.3

111

22

121

2.3

10.3

67.2

2.0

18.2

2.9

15.4

	I II St Lt	3 45111	
Financials Rs (in Crores)			
	First Leasin	First Le	asing C
For the year	Mar.08	Mar.07	Mar.06

Operating Income

Adjusted EPS (Rs)

Dvdnd per Share (Rs)

Net Profit Margin (%)

Return on Equity (%)

Current Market Price Per Share

Source: www.lndiabulls.com (on 27-01-2009)

Current Market Capitalization

Lt Debt Equity

No. of Shares (in crore)

Book value per Share (Rs)

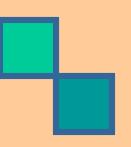
Net Profit

Net Worth

Growth Phases Model

The growth phases model assumes that dividends for each share will grow at two or more *different* growth rates.

$$V = \sum_{t=1}^{n} \frac{D_0(1+Q_1)^t}{(1+k_e)^t} + \sum_{t=n+1}^{\infty} \frac{D_n(1+Q_2)^t}{(1+k_e)^t}$$


Growth Phases Model

Note that the second phase of the growth phases model assumes that dividends will grow at a constant rate g_2 . We can rewrite the formula as:

$$V = \sum_{t=1}^{n} \frac{D_0(1+t)^t}{(1+k_e)^t} + \left[\frac{1}{(1+k_e)^n}\right] \frac{D_{n+1}}{(k_e-g_2)}$$

FY2008 figures EPS Rs 6.01 BV Rs 40.67 Dividend 1.50

Lets Value ... Linc Pen & Plastics

EPS Rs 6.01

BV Rs 40.67

Dividend 1.50

Current Price 21.5

Market Cap 17.2

Refer: www.equitymaster.com

For the year

Net Profit

Net Worth

Operating Income

Adjusted EPS (Rs)

No. of Shares (in crore)

Book value per Share (Rs)

Dydnd per Share (Rs)

Net Profit Margin (%)

Return on Equity (%)

RKK/XLRI/Jamshedpur/PMIR/BFM

Lt Debt Equity

Lets Value		
Financials Rs (in Crores)		
	Kohinoor Foods	

803

635

155

2.0

8.0

57.2

0.0

8.0

4.0

1.4

5

703

589

22

139

2.0

11.3

70.7

1.0

3.7

1.4

15.9

603

540

21

118

2.0

10.5

60.4

2.2

3.8

8.0

19

17.5

503

507

15

106

2.0

7.9

54.1

2.0

3.0

0.3

14.6

403

532

13

95

2.0

6.6

48.2

1.5

2.4

0.2

13.7

303

453.9

9.49

84.47

1.96

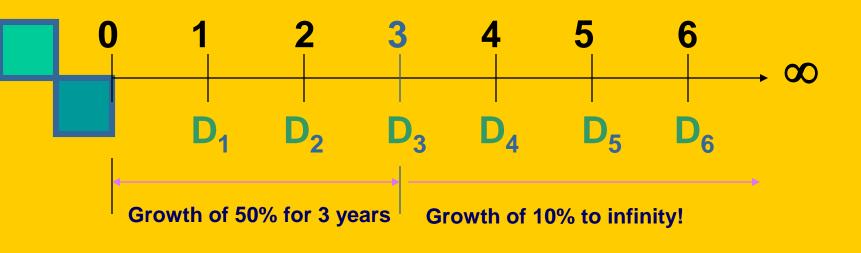
4.87

43.1

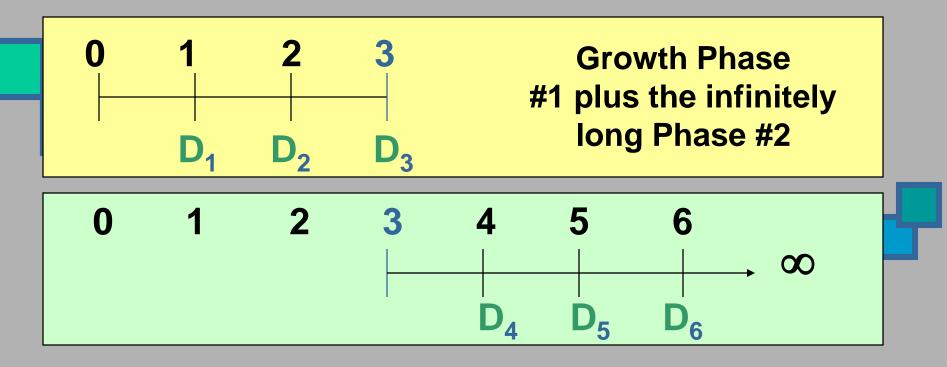
1.31

2.06

0.19

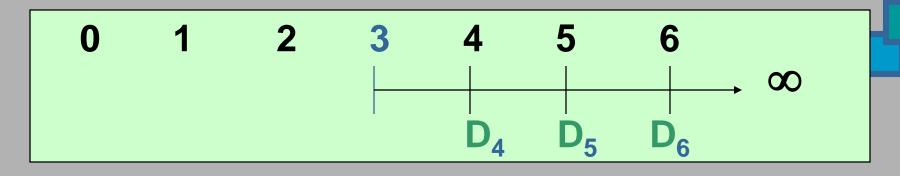

11.3

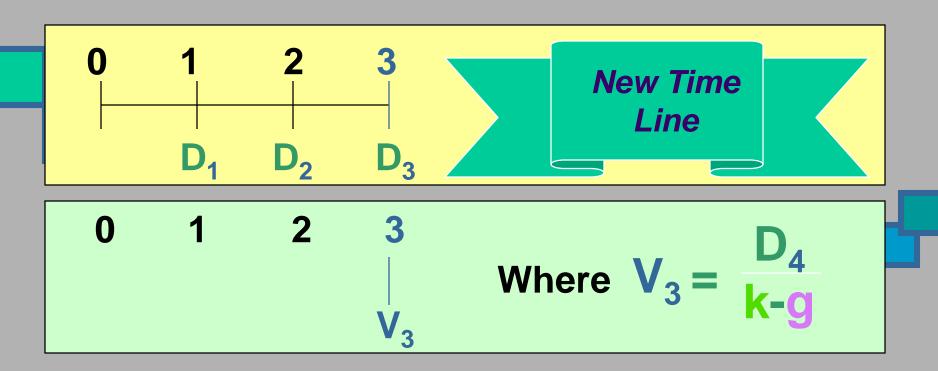
2009


Lets Value Kohinoor Foods

Financials Rs (in Crores)						
	Kohinoor Fo	oods				
For the year	803	703	603	503	403	303
Operating Income	635	589	540	507	532	453.9
Net Profit	5	22	21	15	13	9.49
Net Worth	155	139	118	106	95	84.47
No. of Shares (in crore)	2.0	2.0	2.0	2.0	2.0	1.96
Adjusted EPS (Rs)	0.8	11.3	10.5	7.9	6.6	4.87
Book value per Share (Rs)	57.2	70.7	60.4	54.1	48.2	43.1
Dvdnd per Share (Rs)	0.0	1.0	2.2	2.0	1.5	1.31
Net Profit Margin (%)	0.8	3.7	3.8	3.0	2.4	2.06
Lt Debt Equity	4.0	1.4	0.8	0.3	0.2	0.19
Return on Equity (%)	1.4	15.9	17.5	14.6	13.7	11.3
Current Market Price Per	Share R	ls. 90.8	5			
Current Market Capitaliza	ation	Rs. 245	.1 Crore	S		
Source: www.Indiabulls.cor	n (on 14-11-2	007)				

Stock Kohinoor Foods has an expected growth rate of 50% for the next 3 years and 7% thereafter. Each share of stock just received an annual Rs. 1.00 dividend per share (on Rs.10 par value). The appropriate discount rate is 12%. What is the value of the common stock under this scenario?


Kohinoor Foods has two phases of growth. The first, 50%, starts at time t=0 and is followed by 7% thereafter starting at time 3. We should view the time line as two separate time lines in the valuation.


Note that we can value Phase #2 using the *Constant Growth Model*

$$V_3 = \frac{D_4}{k-1}$$

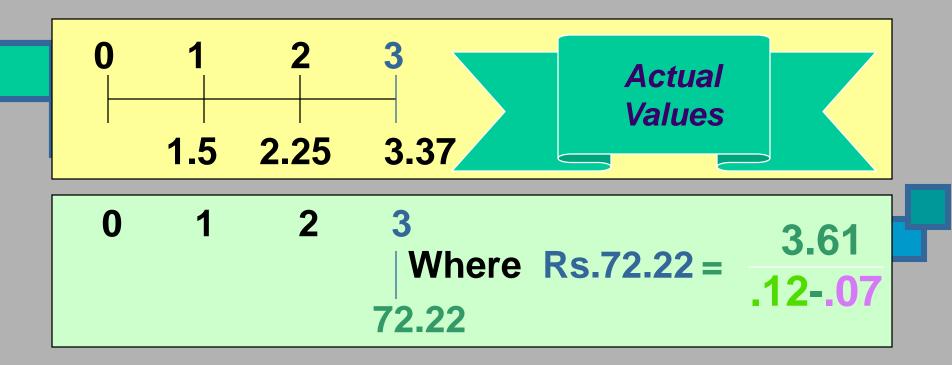
We can use this model because dividends grow at a constant 7% rate beginning at the end of Year 3.

Note that we can now replace <u>all</u> dividends from Year 4 to infinity with the *value* at time t=3, V₃! Simpler!!

Now we only need to find the first four dividends to calculate the necessary cash flows.

Determine the annual dividends.

$$D_0 = Rs.1.00$$
 (this has been paid already)


$$D_1 = D_0(1+g_1)^1 = Rs.1.00(1.5)^1 = Rs.1.50$$

$$D_2 = D_0(1+g_1)^2 = Rs.1.00(1.5)^2 = Rs.2.25$$

$$D_3 = D_0(1+g_1)^3 = Rs.1.00(1.5)^3 = Rs.3.37$$

$$D_4 = D_3(1+g_2)^1 = Rs.3.37(1.07)^1 = Rs.3.61$$

Now we need to find the present value of the cash flows.

Finally, we calculate the *intrinsic value* by summing all the cash flow present values.

$$V = Rs. 1.3 + Rs. 1.8 + Rs. 2.4 + Rs. 51.4$$

$$V = Rs. 56.9$$

$$V = \sum_{t=1}^{3} \frac{D_0(1+.50)^t}{(1+.12)^t} + \frac{1}{(1+.12)^n} \frac{D_4}{(.14-.07)}$$

Valuation ...

- Intrinsic value represents the price a security "ought to have" based on all factors bearing on valuation.
- Intrinsic Value vis-à-vis Market Value

Capitalization Rate

 Can be estimated using the perpetuity formula, given minor algebraic manipulation

Determining the Yield on Common Stock

Assume the constant growth model is appropriate. Determine the yield on the common stock.

$$P_0 = D_1 / (k_e - g)$$

Solving for k_e such that

$$k_e = (D_1 / P_0) + g$$

DIFFERENT APPROACHES CONTINUES ...

Ram Kumar Kakani XLRI Jamshedpur

Valuation ...

- Dividend Discount Model: Computation of today's share price which states that share value equals the present value of all expected future dividends
- Suppose, a Co-operative Sugar Unit in Uttar Pradesh is up for sale/divestment ... how do you value it?
- Liquidation Model: Net proceeds that would be realized by selling the firm's assets and paying off its creditors

Valuation ...

- Market Value Balance Sheet: Financial statement that uses market value of assets and liabilities
 - Price Earnings Ratio Model
- But, firms are more valuable as going concerns (??) and their ability to generate future cash flows. Market values are more relevant for finance.
- Discounted Cash Flow Model

Example

- Kilburn Chemicals is selling for Rs. 50 in the stock market, what might the market be assuming about the growth in dividends?
- It is known that the dividend declared by it in last year was 20%.
- It is given that 15% is the expected return
- Answer: The market is assuming the dividend will grow at 10.6% per year, indefinitely.

Financials Rs (in Crores)	Kilburn C					
For the year	703	603	503	403		
Operating Income	72	63	54	45.86		
Net Profit	7	8	3	2.24		
Net Worth	32	27	21	19.38		
No. of Shares (in crore)	0.7	0.7	0.7	0.74		
Adjusted EPS (Rs)	8.7	10.8	4.2	2.47		
Book value per Share (Rs)	43.2	36.8	28.4	26.37		
D∨dnd per Share (Rs)	2.0	2.0	1.8	1.5		
Net Profit Margin (%)	9.7	13.4	6.4	4.88		
Current Ratio	2.4	3.1	3.3	3.59		
Lt Debt Equity	0.8	0.9	0.7	0.97		
Source: www.Indiabulls.com (on 14-11-2007)						

Valuation ...

- Return Measures
- Dividend Yield = Div_1/P_0
- Return on Equity (ROE) = EPS/BV [a.k.a Return on Net Worth (RONW)]
- What happens if Kilburn Chemicals decides to pay a lower dividend, and reinvest the funds, the stock price may increase because the future dividends may be higher.

Financials Rs (in Crores)	Kilburn C			
For the year	703	603	503	403
Operating Income	72	63	54	45.86
Net Profit	7	8	3	2.24
Net Worth	32	27	21	19.38
No. of Shares (in crore)	0.7	0.7	0.7	0.74
Adjusted EPS (Rs)	8.7	10.8	4.2	2.47
Book value per Share (Rs)	43.2	36.8	28.4	26.37
D∨dnd per Share (Rs)	2.0	2.0	1.8	1.5
Net Profit Margin (%)	9.7	13.4	6.4	4.88
Current Ratio	2.4	3.1	3.3	3.59
Lt Debt Equity	0.8	0.9	0.7	0.97
Return on Equity (%)	20.1	29.3	14.7	9.4

RKK/XLRI/Jamshedpur/PMIR/BFM

38

2009

Financials Rs (in Crores)	Pioneer	Distilleri	es	
For the year	703	603	503	403
Operating Income	48	40	41	25
Net Profit	5	1	1	-5
Net Worth	14	9	8	6
No. of Shares (in crore)	1.1	1.0	1.0	0.8
Adjusted EPS (Rs)	4.6	1.4	0.9	-6.2
Book value per Share (Rs)	13.7	9.6	8.5	7.0
D∨dnd per Share (Rs)	1.0	0.0	0.0	0.0
Net Profit Margin (%)	10.9	3.3	2.3	-21.0
Current Ratio	1.7	2.1	2.7	7.0
Lt Debt Equity	3.0	3.7	3.7	4.7
Return on Equity (%)	33.9	14.3	11.0	-87.9

Stock price and EPS link

- Payout ratio: Fraction of earnings paid out as dividends
- Ploughback ratio: Fraction of earnings retained by the firm
- Growth can be derived from applying the return on equity to the percentage of earnings ploughed back into operations.
- $P_0 = E_1(1 b)/(k_e ROE \times b)$

Stock price and EPS link

- So, justified price-earnings ratio becomes $P_0/E_1 = (1 b)/(k_e ROE \times b)$
- P/E Ratio and Ploughback Ratio
 - If, ROE > k_e then \uparrow in b leads to \uparrow in P/E
 - If, ROE $< k_e$ then \uparrow in b leads to \checkmark in P/E
- P/E Ratio and Interest Rate
- P/E Ratio and Risk
- P/E Ratio and Liquidity

Example

Supreme Petrochemicals Ltd. (SPL) forecasts to pay a Rs. 5.00 dividend next year, which represents 100% of its earnings. This will provide investors with a 12% expected return. Instead, Saket suggests to blow back 40% of the earnings at the firm's current return on equity of 20%. What is the value of the stock before and after the ploughback decision.

Example ... Continued

- Answer: If the company did not ploughback some earnings, the stock price would remain at Rs. 41.67. With the ploughback, the price rises to Rs. 75.00
- The difference between these two numbers (75.00 41.67 = 33.33) is called the Present Value of Growth Opportunities (PVGO)

Share Price ...

- In other words, PVGO is Net Present Value (NPV) of a firm's future investments
- Sustainable Growth Rate: Steady rate at which a firm can grow (= ROE × ploughback ratio)
- Share price = present value of level stream of earnings + present value of growth opportunities

FCF and PV

- Free Cash Flows (FCF) should be the theoretical basis for all PV calculations
- FCF is a more accurate measurement of PV than either Div or EPS
- The market price does not always reflect the PV of FCF
- When valuing a business for purchase, always use FCF

Valuing a business

- The value of a business is usually computed as the discounted value of FCF out to a *valuation horizon* (H)
- The valuation horizon is sometimes called the terminal value and is calculated like PVGO.

Book Value

An accounting measure and can be established easily

But,

- Accounting conventions and policies are subject to a lot of subjectivity and arbitrariness
- Also, historical figures are quite divergent from current economic value/earnings power

Liquidation Value

Though it is more realistic than book value

But,

- It is difficult to estimate the amounts to be realized from the liquidation of various assets
- It also does not reflect earnings capacity of the business

List of Sugar Mills in U.P.

Bajaj Hindustan	New Swadeshi Sugar Mills
Balrampur Chini Mills	Oswal Overseas
Basti Sugar Mills	Oudh Sugar Mills
Birla Sugar Mills	Pratappur Sugar & Ind
Chilwaria Sugars	Ramalal Sahakari Chini Mills
Daya Sugar	Rosa Sugar Works.
Dwarikesh Sugar Industry	Saraya Sugar Mills
Govind Nagar Sugar Mills	Seksaria Biswan Sugar Factory
H.M.P.Sugar Ltd	Shravasti Kisan Sahakari Chini Mills
ISGEC	Simbhaoli Sugar Mills
J.K.Sugar	The Bharat Sugar Mills
K.M.Sugar Mills	The Saraswati Sugar Mills
Kasturi Sugar Mills	The United Provinces Sugar Chemic
Kisan Sahakari Chini Mills	Titawi Sugar Complex.
Mahalakshmi Sugar Mills	Tulsipur Sugar Co.
Mawana Sugar Mills	U.P.State Sugar Corporation
Motilal Padampat Udyog	Upper Doab Sugar Mills
New India Sugar Mills	Upper Ganges Sugar Ind.

Available Data of Similar Sugar Mills

14/11/2007	Price	BV	P/BV	EPS	P/EPS
Upper Ganges Sugar	78	144	0.5	41.0	1.9
Dwarikesh Sugar	58	97	0.6	13.4	4.3
Riga Sugar	25	51	0.5	15.0	1.7
K M Sugar	21	36	0.6	6.7	3.1
Rana Sugar	17	26	0.6	3.8	4.3
Mawana Sugar	28	57	0.5	2.5	11.2
			0.56		4.43

	l									
Valuation	of Su	igar N	Aill							
Year	1	2	3	4	5	6	7	8	9	10
Capex	10	5	1	1	1	1	1	1	1	1
Depreciat	2	2	2	2	2	2	2	2	2	2
PAT	4	-2	2	4	8	10	11	12	13	14
FCF	-12	-5	3	5	9	11	12	13	14	15
Terminal	Value									70
FCF incl.	-12	-5	3	5	9	11	12	13	14	85