
Options with Focus on Real Options

Ram Kumar Kakani

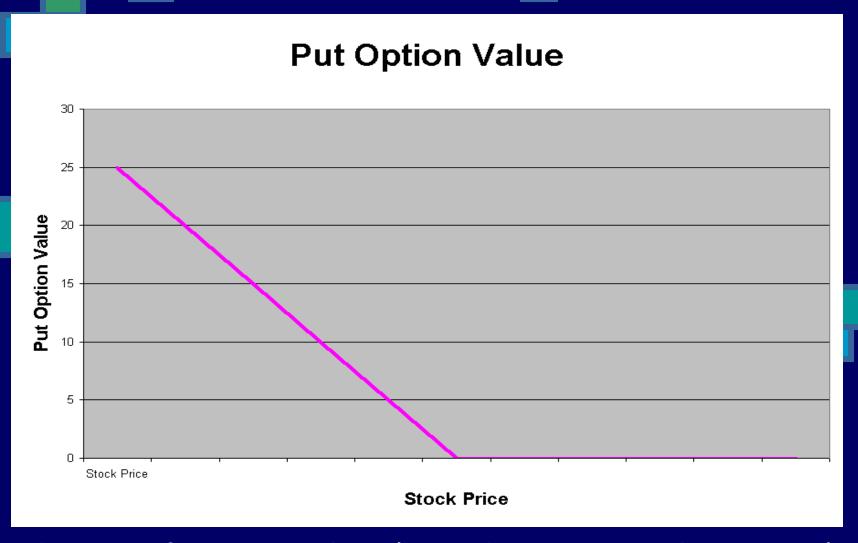
Terminology

- An option is defined as a right, but not an obligation, to buy or sell underlying assets at a fixed price during a specified time period.
- The fixed price is called the exercise price
- Call Option Right to buy an asset at a specified exercise price on or before the exercise date.
- Put Option Right to sell an asset at a specified price on or before the exercise date.

Option Obligations

Call Option	Right to buy asset	Obligation to sell asset
Put Option	Right to sell asset	Obligation to buy asset


Option buyers have the right to buy or sell assets but option sellers are obligated to sell the asset


Option Value

- The value of option at expiration is a function of the stock price and the exercise price.
- Example: Option values given an exercise price of \$85

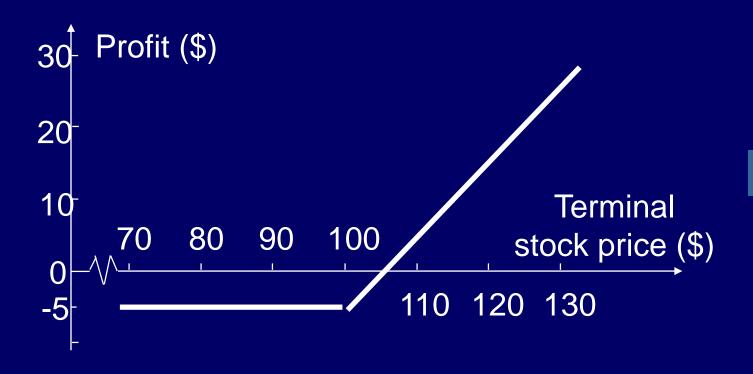
Stock Price	60	70	80	90	100	110
Call Value	0	0	0	5	15	25
Put Value	25	15	5	0	0	0

For a buyer of a call option (ignoring transaction costs)



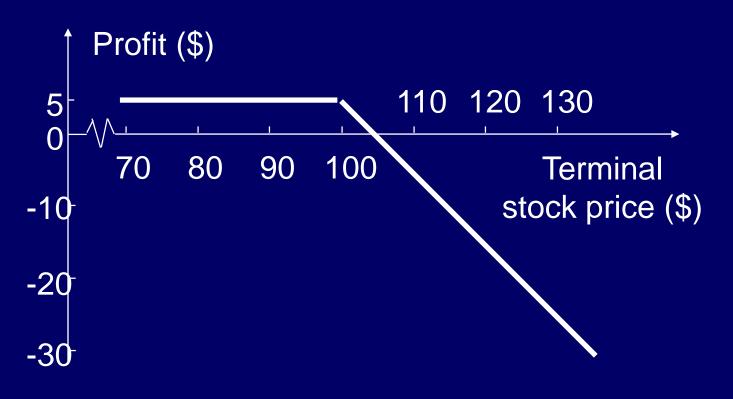
For a buyer of a put option (ignoring transaction costs)

Mirror Image of a buyer of a call option (ignores transaction costs)

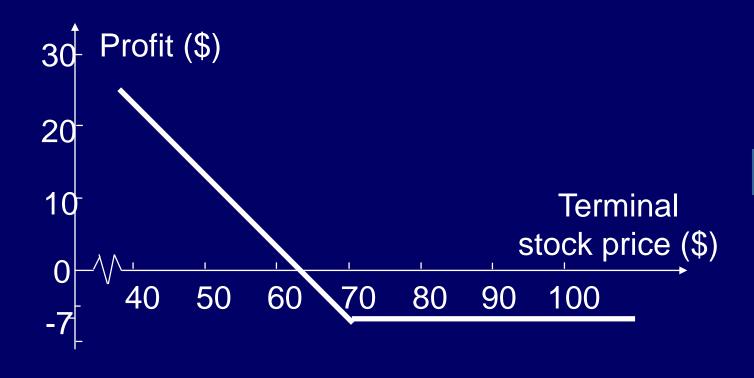

Mirror Image of a buyer of a sell option (ignores transaction costs)

Terminology

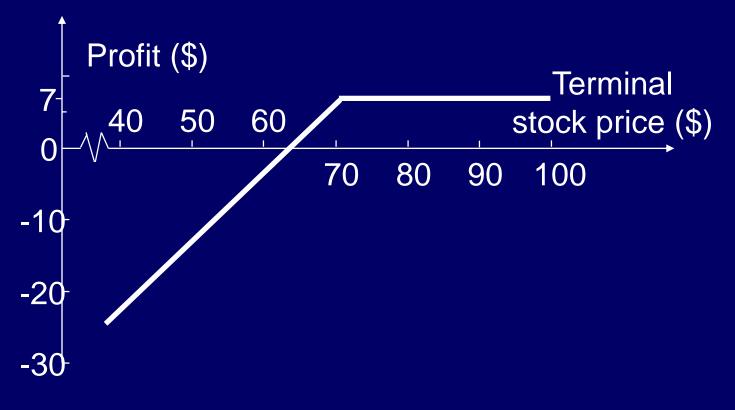
- The party that has agreed to buy has what is termed a long position (option holder)
- The party that has agreed to sell has what is termed a short position (option writer)
- An European option can be exercised only on the expiration date
- An American option can be exercised on or before the expiration date
- At the money, In the money (profit), Out of the money (loss)


Long Call on IBM (Figure 1.2, Page 7, of Option, Futures and other derivatives', John C. Hull)

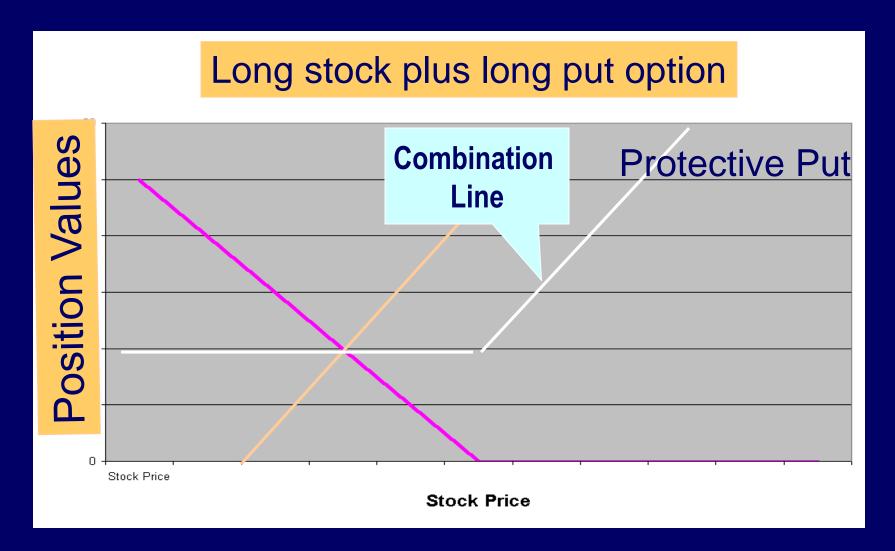
Profit from buying an IBM European call option: option price = \$5, strike price = \$100, option life = 2 months


Short Call on IBM (Figure 1.3, page 7, of 'Option, Futures, and other derivatives', John C. Hull)

Profit from writing an IBM European call option: option price = \$5, strike price = \$100, option life = 2 months


Long Put on Exxon (Figure 1.4, page 8, of 'Option, Futures, and other derivatives', John C. Hull)

Profit from buying an Exxon European put option: option price = \$7, strike price = \$70, option life = 3 mths



Short Put on Exxon (Figure 1.5, page 9, of Option, Futures, and other derivatives', John C. Hull)

Profit from writing an Exxon European put option: option price = \$7, strike price = \$70, option life = 3 mths

Protective Put

Can be thought of as insurance against falling shareprice

Payoff

- If S₁ is the stock price and E is the exercise price
- For a call option, $C = Max (S_1 E, 0)$
- For a put option, $P = Max(0, E S_1)$

Straddle -

- Call and Put options together in the same contract
- Where the exercise price and maturity date are identical for both options
- Good strategy for profiting from high volatility
- This strategy pays off if the share price movement is beyond a certain limit in either direction

Put-Call Parity Theorem

- Example: Bank Deposit + Buy Call = Buy Share + Buy Put
- [Put Value + Current Share Price] is equal to [Call Value + Present Value of Exercise Price]
- Hence, C = S + P E

Long Call Option Value depends on ...

Price of an underlying asset

Positive

Exercise Price

Negative

Variability of returns

Positive

Time left for expiration

Positive

Risk free interest rate

Positive

Long Put Option Value depends on ...

Price of an underlying asset

Negative

Exercise Price

Positive

Variability of returns

Positive

Time left for expiration

Positive

Risk free interest rate

Negative

Black and Scholes Model

- c: equilibrium Call option price today
- p : Put option price today
 - S_0 : Stock price today
- X : Strike price
- T: Life of option
- σ²: Standard deviation of continuously compounded annual rate of return on the stock

- N(d): Value of the cumulative normal density function
- r: Risk-free rate for maturity T with continuous compounding
- e : Base of natural logarithm

$\overline{C_0} = \overline{[S_0N(d_1)]} - \overline{[(X/e^{rt})N(d_2)]}$

N(d₁) and N(d₂) are values of the cumulative normal distribution functions [after calculating d₁ and d₂ one can get them through statistical normal tables]

Example [from Financial Management: Theory and Practice by Prasanna Chandra]

- Current Share Price = 60
- Exercise Price = 56
- Continuously compounded risk free annual interest rate = 0.14
- Length of time = 6 months
- Standard Deviation = 0.09
- What is the equilibrium value of a call and put option now?

- $d_1 = 0.761$
- $d_2 = 0.554$
- $N(d_1) = 0.7762$
- $N(d_2) = 0.7102$
- Current Call Value = 9.489
- Current Put Value = 1.703

Common Equity as an Example

- We know, S + B = V
- S = Max (0, V-B)
- In case of a insolvent firm, the equity holders will get zero.
- In case of a profitable firm, the equity holders will get (V-B).
- In other words, they will get all the remaining value of the firm after repaying the bond/debt holders.

Managerial Real Options

Management flexibility to make future decisions that affect a project's expected cash flows, life, or future acceptance.

Project Worth = NPV +

Option(s) Value

Managerial Real Options

Expand (or Contract)

 Allows the firm to expand (contract) production if conditions become favorable (unfavorable) - GACL

<u>Abandon</u>

Allows the project to be terminated early - Enron
Postpone (timing option)

 Allows the firm to delay undertaking a project (reduces uncertainty via new information) - Power Producers

Flexible Production Facilities

Purchasing flexible production facilities - Reliance

Example

- MNC-giant Shell uses
- The timing option in an offshore project (oil exploration field - a) not to develop; b) develop the reserve immediately; and c) postpone development and thus extend exploration phase;
- Growth (sequential) option in a pioneering project to prove technology
- Abandonment decision in a refinery production unit

Insights

- Make a clear distinction between investment alternatives and options embedded (in these alternatives)
- Convince management that some proposals contain flexibility that cannot be valued by DCF technique
- Option Pricing should be used in combination with DCF (when there are future decision points which influence riskiness of cash flow)
- Whenever possible, incorporate the influence of competitors and other costs that may affect the value of the option(s)
- In practice, real world cases have to be simplified in order to keep the order tractable.