Risk and Managerial Options in Capital Budgeting

An IIlustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL A

State

Deep Recession	.05	$-3,000$
Mild Recession	.25	1,000
Normal	.40	5,000
Minor Boom	.25	9,000
Major Boom	.05	13,000

Summary of Pronosal_A

The standard deviation =
SQRT
$(14,400,000)=\$ 3,795$
The expected cash flow $=\$ 5,000$

An IIlustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL B

State
Deep Recession . 05
Mild Recession
Normal
Minor Boom
Major Boom
\$ $-1,000$
.25
.40
.25
.05

2,000
5,000
8,000
11,000

Summary of Pronnsal B

The standard cleviation = SQRT $(8,100,000)=\$ 2,826$

The expected cash flow $=\$ 5,000$

The standard deviation of
Proposal $B<$ Proposal A.
($\$ 2,846<\$ 3,795$)

Total Proiect Risk

Projects have risk that may change from period to period.
 Projects are more likely to have continuous, rather than discrete distributions.

Probability Tree Approach

A graphic or tabular approach for organizing the possible cash-flow streams generated by an investment. The presentation resembles the branches of a tree. Each complete branch represents one possible cash-flow sequence.

Probability Tree Approach

Marico is examining a project that will have an initial cost today of $\$ 900$. Uncertainty surrounding the first year cash flows creates three possible cashflow scenarios in Year 1.

Probability Tree Approach

Node 1: 20% chance of a \$1,200 cash-flow.

Node 2: 60% chance of a \$450 cash-flow.

Node 3: 20% chance of a -\$600 (negative) cash-flow.

Probability Tree Approach

Joint Probabilities [P(1,2)]

Project NPV Based on Probability Tree Usage

The probability tree accounts for the distribution of cash flows. Therefore, discount all cash flows at only the risk-free rate of return.

$\overline{\mathrm{NPV}}=\sum_{i=1}^{2}\left(N P V_{i}\right)\left(P_{i}\right)$

The NPV for branch iof the probability tree for two years of cash flows is

NPV for Each Cash-Flow Stream at 5\% Risk-Free Rate

Calculating the Expected Net Present Value (NPV)

Summary of the Decision Tree Analysis

The standard deviation =

SQRT

$(\$ 1,031,800)=\$ 1,015.78$
The expected NPV $=-\$ \quad 17.01$

Simulation Approach

An approach that allows us to test the possible results of an investment proposal before it is accepted. Testing is based on a model coupled with probabilistic information.

Simulation Approach

Each proposal will generate an internal rate of return. The process of generating many, many simulations results in a large set of internal rates of return. The distribution might look like the following:

Managerial (Real) Options

Management flexibility to make future decisions that affect a project's expected cash flows, life, or future acceptance.

Project Worth $=$ NPV +
Option(s) Value

Managerial (Real) Options

ADEnctos

- Allows the project to be terminated early.

Previous Example with Project Abandonment

Project Abandonment

Project Abandonment

Project Abandonment

Summary of the Addition of the Abandonment Option

The expected NPV*

$$
=\$ 71.88
$$

NPV* = Original NPV + Abandonment Option

Thus, $\$ 71.88=-\$ 17.01+$ Option Abandonment Option $=\$ 88.89$

* For "True" Project considering abandonment option

Managerial (Real) Options

Expand (or contract)

- Allows the firm to expand (contract) production if conditions become favorable (unfavorable).

Abandon

- Allows the project to be terminated early. Postpone
- Allows the firm to delay undertaking a project (reduces uncertainty via new information).

