Risk and Managerial Options in Capital Budgeting

An Illustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL A

<u>State</u>	<u>Probability</u>	Cash Flow	
Deep Recession	.05	\$ -3,000	
Mild Recession	.25	1,000	
Normal	.40	5,000	
Minor Boom	.25	9,000	
Major Boom	.05	13,000	

Summary of Proposal A

The **standard deviation** = (14,400,000) = **\$3,795**

SQRT

The expected cash flow = \$5,000

An Illustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL B

<u>State</u>	<u>Prob</u>	ability	Cash	Flow	
Deep Recession .05		\$	-1,000		
Mild Recession	.25	·		2,000	
Normal	.40			5,000	
Minor Boom	.25			8,000	
Major Boom	.05		1	1,000	

Summary of Proposal B

The standard deviation = SQRT (8,100,000) = \$2,846

The expected cash flow = \$5,000

The standard deviation of Proposal B < Proposal A. (\$2,846 < \$3,795)

Total Project Risk

Projects have risk that may <u>change</u> from period to period.

Projects are more likely to have *continuous*, rather than discrete distributions.

A graphic or tabular approach for organizing the possible cash-flow streams generated by an investment. The presentation resembles the branches of a tree. Each complete branch represents one possible cash-flow sequence.

Marico is examining a project that will have an **initial cost** today of **\$900**. Uncertainty surrounding the first year cash flows creates three possible cashflow scenarios in Year 1.

Joint Probabilities [P(1,2)]

Project NPV Based on Probability Tree Usage

The probability tree accounts for the distribution of cash flows. Therefore, discount all cash flows at *only* the **risk-free** rate of return.

$$\overline{\mathbf{NPV}} = \sum_{i=1}^{z} (\mathbf{NPV}_{i})(\mathbf{P}_{i})$$

The NPV for branch i of the probability tree for two years of cash flows is

$$NPV_{i} = \frac{CF_{1}}{(1 + R_{f})^{1}} + \frac{CF_{2}}{(1 + R_{f})^{2}} - ICO$$

NPV for Each Cash-Flow Stream at 5% Risk-Free Rate

Calculating the Expected Net Present Value (NPV)

	IPV _i	P(1,2)	NPV _i * P(1,2) \$ 44 77		
Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 Branch 6 Branch 7 Branch 8-\$ 1,5 Branch 9	\$ 2,250.52 \$ 1,331.29 \$ 1,059.18 \$ 344.90 \$ 72.79 -\$ 199.32 -\$ 1,017.91 562.13 -\$ 2,106.35	.12 .06 .21 .24 .15 .02 .10 .08	\$159.75 \$ 63.55 \$ 72.43 \$ 17.47 -\$ 29.90 -\$ 20.36 -\$156.21 -\$168.51		
Expected Net Present Value = -\$ 17.01					

14

Summary of the Decision Tree Analysis

The standard deviation = (\$1,031,800) = \$1,015.78

SQRT

The expected NPV = -\$ 17.01

Simulation Approach

An approach that allows us to test the possible results of an investment proposal before it is accepted. Testing is based on a model coupled with probabilistic information.

Simulation Approach

Each proposal will generate an **internal rate of return**. The process of generating many, many simulations results in a large set of internal rates of return. The **distribution** might look like the following:

Managerial (Real) Options

Management flexibility to make future decisions that affect a project's expected cash flows, life, or future acceptance.

Project Worth = NPV + Option(s) Value

Managerial (Real) Options

Allows the project to be terminated early.

Previous Example with Project Abandonment

Assume that this project can be abandoned at the end of the first year for **\$200**.

What is the project worth?

Project Abandonment

Project Abandonment

Project Abandonment

Summary of the Addition of the Abandonment Option

The expected NPV* = \$ 71.88 NPV* = Original NPV + Abandonment Option Thus, \$71.88 = -\$17.01 + Option Abandonment Option = \$ 88.89

* For "True" Project considering abandonment option

Managerial (Real) Options

Expand (or contract)

 Allows the firm to expand (contract) production if conditions become favorable (unfavorable).
 <u>Abandon</u>

Allows the project to be terminated early.
<u>Postpone</u>

 Allows the firm to delay undertaking a project (reduces uncertainty via new information).

