Capital Budgeting

[Compiled from (a) Van Horne \& Wachowicz, and (b) Gitman]

The process of identifying, analyzing, and selecting investment projects whose returns (cash flows) are expected to extend beyond one year.

The Capital Budgeting

- Generate investment proposals consistent with the firm's strategic objectives.
- Estimate after-tax incremental operating cash flows for the investment projects.
- Evaluate project incremental cash flows.

The Capital Budgeting

- Select projects based on a value-maximizing acceptance criterion.
- Reevaluate implemented investment projects continually and perform post-audits for completed projects.

Classification of Investment Project Proposals

1. New products or expansion of existing products
2. Replacement of existing equipment or buildings
3. Research and development
4. Exploration
5. Other (e.g., safety or pollution related)

Screening Proposals and Decision Making

1. Section Chiefs
2. Plant Managers
3. VP for Operations
4. Capital Expenditures Committee
5. President
6. Board of Directors

Example of a Washing Machine

Brajesh is head of a joint family consisting of 10 people. There is tremendous family pressure on him to purchase automatic heavy duty washing machine. He is considering purchase of a high class washing machine. The washing machine will cost AED 40,000. He enquires and finds that they wash clothes almost every day. He also finds out that this will help him save AED 40 per day [paid to servant, etc.]. The machine has a life of 3 years. Should he go for the purchase?

Example

Year	0	1	2	3
Opeartional Income/Expense	-40010	13200	13200	13200
Cumulative	-40000	-26800	-13600	-400
So, he rejects				

One of the family members is a smart accounts student. She suggests that why don't you so show this as part of your business and then adjust the depreciation. She also finds that it can be procured from the market at AED 36000/- (basically 10\% discount). She also suggests that we can use straight line depreciation with zero salvage value?

Example

Year	0	1	2	3
lncremenital Operation Profits	36000	13200	13200	1300
Less Deprecicition		12000	12000	12000
Inctemerital PET		1200	1200	1200
tax (0)6\%		$432{ }^{\prime \prime}$	4331	432
Incremential PAT		768	768	760
Cash Flow from Machine	36000	12768	12768	12768
Cunnulative	36000	22322	.1046	2304

What is the payback period of the machine?
Around 2 years 10 months
But,
We have not considered the 'Time Value of Money'
Brajesh is in the business of Agri-products business and the cost of capital of his firm is 15%
How should he evaluate the business? Concept of IRR and NPV

Cash Flow from Machine	.36000	12768	12768	12768
Internal Rate of Return (IRR)	3.17%			
Present Value of Cash Flows	.36000	11103	9654	8395
Net Presenit Value (NPV)	.6848			

Estimating After-Tax Incremental Cash Flows

Basic characteristics of relevant project flows

- Cash (not accounting income) flows

■ Operating (not financing) flows
■ After-tax flows
V Incremental flows

Estimating After-Tax Incremental Cash Flows

Principles that must be adhered to in the estimation
\boxtimes Ignore sunk costs
\boxtimes Include opportunity costs
\boxtimes Include project-driven changes in working capital
\boxtimes Include effects of inflation

Tax Considerations and Depreciation

Depreciation represents the systematic allocation of the cost of a capital asset over a period of time for financial reporting purposes, tax purposes, or both.

- Generally, profitable firms prefer to use an accelerated method for tax reporting purposes such as MACRS or DDB (WDV) method instead of the Straight Line Method.

Depreciation and the MACRS Method

- Everything else equal, the greater the depreciation charges, the lower the taxes paid by the firm.
- Depreciation is a non-cash expense.
- In MACRS (Modified Accelerated Cash Recovery System) type of depreciation, assets are depreciated (MACRS) on one of eight different property classes.

Recovery	Property Class		
Year	$3-$ Year	$5-$ Year	7-Year
1	33.33%	20.00%	14.29%
2	44.45	32.00	24.49
3	14.81	19.20	17.49
4	7.41	11.52	12.49
5		11.52	8.93
6		5.76	8.92
7			8.93
8			4.46
	2009		

Depreciable Basis

In tax accounting, the fully installed cost of an asset. This is the amount that, by law, may be written off over time for tax purposes.
Depreciable Basis =
Cost of Asset + Capitalized Expenditures

Capitalized Expenditures.

Capitalized Expenditures are expenditures that may provide benefits into the future and therefore are treated as capital outlays and not as expenses of the period in which they were incurred.

Examples: Shipping and installation

	EXAHPLE					
Plant value	9500					
Installation Costs	500		Depreciation Types			
Depreciable value	10000		SLM is Staight Line Method			
Saluange value	1000		MACRS is Madifed Cash Recowery Systeri			
Time Period	5		DDB is Double Deciliring Ealarice Method			
Depreciation Type	Year 1	Year 2	Year 3	Year 4	Year 5	
SLH	1800	1800	1800	1800	1800	
DDE (or WDV) Hethod	4000	2400	1440	864	1296	
HACRS Hethod	2000	3200	1900	1200	1200	
Book Values	Starting	Year 1	Year 2	Year 3	Year 4	Year 5
SLH	10000	8200	6400	4600	2800	1000
DDE (or WDV) hethod	10000	60000	3600	2160	1296	0
HACRS Method	10000	8000	4800	2900	1700	500

Different Depreciation Methods

Sale or Disposal of a Depreciable Asset

- Generally, the sale of a "capital asset" generates a capital gain (asset sells for more than book value) or capital loss (asset sells for less than book value).

Calculating the Incremental Cash Flows

- Initial cash outflow -- the initial net cash investment.
- Interim incremental net cash flows -- those net cash flows occurring after the initial cash investment but not including the final period's cash flow.
- Terminal-year incremental net cash flows -- the final period's net cash flow.

Initial Cash Outflow

a) Cost of "new" assets
b) $+\quad$ Capitalized expenditures
c) $+(-)$ Increased (decreased) NWC
d) - Net proceeds from sale of "old" asset(s) if replacement
e) $\quad+(-)$ Taxes (savings) due to the sale of "old" asset(s) if replacement
f) $=$ Initial cash outflow

Incremental Cash Flows

Net incr. (decr.) in operating revenue less (plus) any net incr. (decr.) in operating expenses, excluding depr.
b) - (+) Net incr. (decr.) in tax depreciation
c) $=$ Net change in income before taxes
d) $-(+)$ Net incr. (decr.) in taxes
e) $=$ Net change in income after taxes
f) $\quad+(-)$ Net incr. (decr.) in tax depr. charges
g) $=$ Incremental net cash flow for period

Terminal-Year Incremental Cash Flows

a)

Calculate the incremental net cash flow for the terminal period
b) + (-) Salvage value (disposal/reclamation costs) of any sold or disposed assets
c) - (+) Taxes (tax savings) due to asset sale or disposal of "new" assets
d) + (-) Decreased (increased) level of "net" working capital
e) $=$ Terminal year incremental net cash flow

Example of an Asset Expansion Project

Sameer Baskets (SB) is considering the purchase of a new basket weaving machine. The machine will cost $\$ 50,000$ plus $\$ 20,000$ for shipping and installation and falls under the 3-year MACRS class. NWC will rise by $\$ 5,000$. Sameer forecasts that revenues will increase by $\$ 110,000$ for each of the next 4 years and will then be sold (scrapped) for $\$ 10,000$ at the end of the fourth year, when the project ends. Operating costs will rise by $\$ 70,000$ for each of the next four years. SB is in the 40% tax bracket.

Initial Cash Outflow

a) \$50,000

20,000 5,000
d) - 0
e) $\quad+(-)$
f)
b)
c) +
(not a replacement)
f) $=$ \qquad

Incremental Cash Flows

a)
b) -
c) =
d) -

Year 1
$\$ 40,000$ 23,331

Year 2
Year 3
Year 4 $\$ 40,000 \quad \$ 40,000 \quad \$ 40,000$ 31,115 10,367 5,187
\$16,669 \$ 8,885 \$29,633 \$34,813
$\begin{array}{llll}6,668 & 3,554 & 11,853 & 13,925\end{array}$
e) =
f) +
\$10,001
\$ 5,331
\$17,780
\$20,888
$\begin{array}{llll}23,331 & 31,115 & 10,367 & 5,187\end{array}$
g) =
\$33,332 \$36,446 \$28,147

Terminal-Year Incremental Cash Flows

a)
\$26,075

10,000 Salvage Value.
4,000 .40*(\$10,000-0) Note, the asset is fully depreciated at the end of Year 4.
NWC - Project ends.
Terminal-year incremental cash flow.

Summary of Project Net Cash Flows

Asset Expansion
$\underset{-\$ 75,000^{*}}{\text { Year 0 }} \quad \underset{\$ 33,332}{\text { Year 1 }} \underset{\$ 36,446}{\text { Year 2 }} \underset{\$ 28,147}{\text { Year 3 }} \underset{\$ 37,075}{\text { Year 4 }}$

Example of an Asset Replacement Project

Let us continue the problem in Slide 21. Assume that the previous asset expansion project is actually an asset replacement project. The original basis of the machine was $\$ 30,000$ and depreciated using straight-line over five years ($\$ 6,000$ per year). The machine has two years of depreciation and four years of useful life remaining. SB can sell the current machine for $\$ 6,000$. The new machine will not increase revenues (remain at $\$ 110,000$) but it decreases operating expenses by $\$ 10,000$ per year (old $=\$ 80,000$). NWC will rise to $\$ 10,000$ from $\$ 5,000$ (old).

Initial Cash Outflow

$\begin{array}{lll}\text { a) } & & \$ 50,000 \\ \text { b) } & + & 20,000 \\ \text { c) } & + & 5,000 \\ \text { d) } & - & 6,000 \\ \text { (sale of "old" asset) } \\ \text { e) } & - & 2,400 \text { (tax savings from } \\ \text { f) } & = & \begin{array}{l}\$ 66,600 \\ \text { loss on sale of } \\ \text { "old" asset) }\end{array}\end{array}$

Calculation of the

Change in Depreciation

a)

| $\frac{\text { Year 1 }}{}$ | $\left.\begin{array}{rrr}\text { Year 2 } & \text { Year 3 } & \text { Year 4 } \\ \$ 23,331 & \$ 31,115 & \$ 10,367 \\ \$ 5,000 & 6,000 & 0\end{array}\right)$ |
| ---: | ---: | ---: | ---: |

b)
c)
$=$
$\$ 17,331$
a)
Represent the depreciation on the "new" project.
b) Represent the remaining depreciation on the "old" project.
c) Net change in tax depreciation charges.

Incremental Cash Flows

a)
b)
$\underline{\text { Year } 1} \quad \underline{\text { Year 2 }} \quad \underline{\text { Year 3 }} \quad \underline{\text { Year 4 }}$
$\$ 10,000 \quad \$ 10,000 \quad \$ 10,000 \quad \$ 10,000$
$\begin{array}{llll}17,331 & 25,115 & 10,367 & 5,187\end{array}$
c) =
d) -
e) =
f) +
g) =
$\begin{array}{llll}\$ 12,932 & \$ 16,046 & \$ 10,147 & \$ 8,075\end{array}$

Terminal-Year Incremental Cash Flows

The incremental cash flow from the previous slide in Year 4. Salvage Value. (.40)*(\$10,000-0). Note, the asset is fully depreciated at the end of Year 4.
Return of "added" NWC.
Terminal-year incremental cash flow.

Summary of Project Net Cash Flows

\author{

Asset Expansion
 \begin{tabular}{cccc}

$-\$ 75,000$ \& $\underline{\text { Year 0 }}$ \& | Year 1 |
| :--- |
| Year 2 |
| $\$ 36,446$ | \& $\underset{\$ 28,147}{\text { Year 3 }}$

\end{tabular}$\frac{\text { Year 4 }}{\$ 37,075}$
 Asset Replacement
 $\begin{array}{lllll}-\$ 66,600 & \underline{\text { Year 0 1 }} & \frac{\text { Year 2 }}{\$ 12,933} & \begin{array}{l}\text { Year 3 } \\ \$ 16,046\end{array} & \begin{array}{l}\text { Year 4 } \\ \$ 10,147 \\ \$ 19,075\end{array}\end{array}$

}

Capital Budgeting Techniques

Project Evaluation: Alternative Methods

- Payback Period (PBP)
- Internal Rate of Return (IRR)
- Net Present Value (NPV)
- Profitability Index (PI)

Independent Project

-For this project, assume that it is independent of any other potential projects that Sameer Baskets may undertake.
\square Independent -- A project whose acceptance (or rejection) does not prevent the acceptance of other projects under consideration.

Payback Period (PBP)

PBP is the period of time required for the cumulative expected cash flows from an investment project to equal the initial cash outflow.

Payback Solution (\#1)

Cumulative Inflows

$$
\begin{aligned}
\text { PBP } \quad & =a+(b-c) / d \\
& =3+(40-37) / 10 \\
& =3+(3) / 10 \\
& =3.3 \text { Years }
\end{aligned}
$$

Payback Solution (*2)

Note: Take absolute value of last negative cumulative cash flow value.

The management of Sankar Baskets has set a maximum PBP of 3.5 years for projects of this type.

Should this project be accepted?

Yes! The firm will receive back the initial cash outlay in less than 3.5 years. [3.3 Years < 3.5 Year Max.]

Strenaths:

- Easy to use and understand
- Can be used as a measure of liquidity
- Easier to forecast ST than LT flows

Weaknesses:

- Does not account for TVM
- Does not consider cash flows beyond the PBP
- Cutoff period is subjective

Internal Rate of Return (IRR)

IRR is the discount rate that equates the present value of the future net cash flows from an investment project with the project's initial cash outflow.

$$
\mathrm{ICO}=\underset{(1+\mathrm{RR})^{1}}{\mathrm{CF}_{1}} \underset{(1+\mid \mathrm{RR})^{2}}{\mathrm{CF}_{2}}+\cdots+\underset{(1+\mid R R)^{n}}{\mathrm{CF}_{\mathrm{n}}}
$$

IRR Solution

$$
\begin{aligned}
& \$ 40,000=\frac{\$ 10,000}{(1+)^{1}}+\frac{\$ 12,000}{(1+)^{2}}+ \\
& \frac{\$ 15,000}{(1+)^{3}}+\frac{\$ 10,000}{(1+)^{4}}+\frac{\$ 7,000}{(1+\quad)^{5}}
\end{aligned}
$$

Find the interest rate () that causes the discounted cash flows to equal $\$ 40,000$.

IRR Solution (Try 10\%)

$$
\left.\begin{array}{rlr}
\$ 40,000= & \$ 10,000(\text { PVIF } & , 1)+\$ 12,000(\text { PVIF } \\
& \$ 15,000(\text { PVIF } & , 1)+ \\
& \$ 7,000(\text { PVIF } & , 5) \\
\$ 40,000(\text { PVIF } & , 4 \\
, 4
\end{array}\right)+
$$

IRR Solution (Try 15\%)

$$
\begin{array}{rlr}
\$ 40,000= & \$ 10,000(\text { PVIF } & , 1)+\$ 12,000(\text { PVIF } \\
& \$ 15,000(\text { PVIF } & , 1)+ \\
& \$ 7,000(\text { PVIF } & , 5) \\
\$ 40,000(\text { PVIF } & , 4)+ \\
& \\
& \$ 40,000= \\
& \$ 10,000(.870)+\$ 12,000(.756)+ \\
& \$ 7,000(.658)+\$ 10,000(.572)+ \\
\$ 40,000= & \$ 8,700+\$ 9,072+\$ 9,870+ \\
& \$ 5,720+\$ 3,479 \\
& \$ 36,841 \quad & \quad \text { Rate is too high!!] }
\end{array}
$$

IRR Solution (Interpolate)

$.05\left[\begin{array}{cc}\mathrm{x}\left[\begin{array}{cc}.10 & \$ 41,444 \\ \text { IRR } & \$ 40,000 \\ .15 & \$ 36,841\end{array}\right] \$ 1,444\end{array}\right] \$ 4,603$
$\begin{gathered}X \\ .05\end{gathered}=\begin{aligned} & \$ 1,444 \\ & \$ 4,603\end{aligned}$

IRR Solution (Interpolate)

$$
\begin{aligned}
& .05\left[\begin{array}{cc}
x\left[\begin{array}{cc}
.10 & \$ 41,444 \\
.15 & \$ 36,841
\end{array}\right] \$ 1,444
\end{array}\right] \$ 4,603 \\
& x=\frac{(\$ 1,444)(0.05)}{\$ 4,603} \quad x=.0157 \\
& =.10+.0157=\quad \text { or }
\end{aligned}
$$

The management of Sankar Baskets has determined that the hurdle rate is 13% for projects of this type.
Should this project be accepted?
No! The firm will receive 11.57% for each dollar invested in this project at a cost of 13\%. [IRR < Hurdle Rate]

Strenaths:

- Accounts for TVM
- Considers all cash flows
- Less subjectivity

Weaknesses:

- Assumes all cash flows reinvested at the IRR
- Difficulties with project rankings and Multiple IRRs

Net Present Value (NPV)

$N P V$ is the present value of an investment project's net cash flows minus the project's initial cash outflow.

$$
N P V=\frac{C F_{1}}{(1+k)^{1}}+\frac{C F_{2}}{(1+k)^{2}}+\ldots+\frac{C F_{n}}{(1+k)^{n}}-I C O
$$

NPV Solution

Sankar Baskets has determined that the appropriate discount rate (k) for this project is 13\%.

$$
\begin{aligned}
\text { NPV }= & \frac{\$ 10,000}{(1 \quad)^{1}}+\frac{\$ 12,000}{(1)^{2}}+\frac{\$ 15,000}{(1)^{3}}+ \\
& \frac{\$ 10,000}{(1)^{4}}+\frac{\$ 7,000}{(1 \quad)^{5}}-\$ 440,000
\end{aligned}
$$

NPV $=\$ 10,000\left(\right.$ PVIF $\left._{13 \%, 1}\right)+\$ 12,000\left(\right.$ PVIF $\left._{13 \%, 2}\right)$
$+\quad \$ 15,000\left(\right.$ PVIF $\left._{13 \%, 3}\right)+\$ 10,000\left(\right.$ PVIF $\left._{13 \%, 4}\right)$
$+\quad \$ 7,000\left(\right.$ PVIF $\left._{13 \%, 5}\right)-\$ 40,000$
$N P V=\$ 10,000(.885)+\$ 12,000(.783)+$ $\$ 15,000(.693)+\$ 10,000(.613)+$
\$ 7,000(.543) - \$40,000
$N P V=\$ 8,850+\$ 9,396+\$ 10,395+$ \$6,130 + \$3,801 - \$40,000 $=-\$ 1,428$

The management of Sankar Baskets has determined that the required rate is 13% for projects of this type. Should this project be accepted?

No! The NPV is negative. This means that the project is reducing shareholder wealth. [Reject as $N P V<0$]

Strenaths:

- Cash flows
assumed to be reinvested at the hurdle rate.
- Accounts for TVM.
- Considers all cash flows.

Profitability Index (PI)

PI is the ratio of the present value of a project's future net cash flows to the project's initial cash outflow.

$$
P I=\left[\frac{C F_{1}}{(1+k)^{1}}+\frac{C F_{2}}{(1+k)^{2}}+\ldots+\frac{C F_{n}}{(1+k)^{n}}\right] \div \| C O
$$

PI Acceptance Criterion

$$
\begin{aligned}
\mathrm{PI} & =\$ 38,572 / \$ 40,000 \\
& =.9643 \text { (Method \#1, 13-33) }
\end{aligned}
$$

Should this project be accepted?

No! The PI is less than 1.00 . This means that the project is not profitable. [Reject as PI < 1.00]

Strenaths:

- Same as NPV
- Allows
comparison of different scale projects

Weaknesses:

- Same as NPV
- Provides only relative profitability
- Potential Ranking Problems

Other Project Relationships

Dependent -- A project whose acceptance depends on the acceptance of one or more other projects.

Potential Problems
 Under Mutual Exdusivity

Ranking of project proposals may create contradictory results.

A. Scale of Investment
B. Cash-flow Pattern
C. Project Life

A. Scale Differences

Compare a small (S) and a large (L) project.

END OF YEAR
0
1
2

NET CASH FLOWS Project S Project L
-\$100 -\$100,000
0
0
$\$ 400$
\$156,250

Scale Differences

Calculate the PBP, IRR, NPV@10\%, and PI@10\%.

Which project is preferred? Why?
Project IRR NPV PI

B. Cash Flow Pattern

Let us compare a decreasing cash-flow (D) project

 and an increasing cash-flow (I) project.END OF YEAR
0

2
3

NET CASH FLOWS
 500
 600
 100
 1,080

Calculate the IRR, NPV@10\%, and PI@10\%.

Which project is preferred?			
Project	$\underline{\text { IRR }}$	$\underline{\text { NPV }}$	$\underline{\text { PI }}$
D	23%	$\$ 198$	1.17
I	17%	$\$ 198$	1.17

C. Project Life Differences

Let us compare a long life (X) project and a short life (Y) project.

END OF YEAR

0
0
3
3,375
0

Project Life Differences

Calculate the PBP, IRR, NPV@10\%, and PI@10\%. Which project is preferred? Why?

Project		IRR	NPV	PI
X	50%	$\$ 1,536$	2.54	
Y	100%	$\$ 818$	1.82	

Another Way to Look at Things

1. Adjust cash flows to a common terminal year if project " Y " will NOT be replaced.

Compound Project Y, Year 1 @10\% for 2 years.

Year	0	1	2	3
CF	$-\$ 1,000$	$\$ 0$	$\$ 0$	$\$ 2,420$

Results: IRR* $=34.26 \%$ NPV $=\$ 818$
*Lower IRR from adjusted cash-flow stream. X is still Best.

Replacing Projects with Identical Projects

2. Use Replacement Chain Approach when project " Y " will be replaced.

0	1	2	3
-1, 000	\%2,000		
	-1,000	\$2,000	
		-1,000	\$2,000
-\$1,000	\$1,000	\$1,000	\$2,000
Results:	$1 \mathrm{IRR}^{*}=100 \%$	NP	238.17

*Higher NPV, but the same IRR. Y is Best.
2009

Capital Rationing

Capital Rationing occurs when a constraint (or budget ceiling) is placed on the total size of capital expenditures during a particular period.

Example: Sameer must determine what investment opportunities to undertake for Sameer Baskets (SB). He is limited to a maximum expenditure of $\$ 32,500$ only for this capital budgeting period.

Available Projects for SB

Project		ICO	IRR		NPV	PI
A	\$	500	18\%	\$	50	1.10
B		5,000	25		6,500	2.30
C		5,000	37		5,500	2.10
D		7,500	20		5,000	1.67
E		12,500	26		500	1.04
F		15,000	28		21,000	2.40
G		17,500	19		7,500	1.43
H		25,000	15		6,000	1.24

Choosing by IRRs for SB

| Project | ICO | IRR | NPV | PI |
| :---: | ---: | :--- | ---: | ---: | ---: |
| C | $\$ 5,000$ | 37% | $\$ 5,500$ | 2.10 |
| F | 15,000 | 28 | 21,000 | 2.40 |
| E | 12,500 | 26 | 500 | 1.04 |
| B | 5,000 | 25 | 6,500 | 2.30 |
| Projects C, F, and E have the | | | | |
| three largest IRRs. | | | | |

The resulting increase in shareholder wealth is $\$ 27,000$ with a $\$ 32,500$ outlay.

Choosing by NPVs for SB

Project ICO IRR NPV PI

F	$\$ 15,000$	28%	$\$ 21,000$	2.40
G	17,500	19	7,500	1.43
B	5,000	25	6,500	2.30

Projects F and G have the two largest NPVs.

The resulting increase in shareholder wealth is $\$ 28,500$ with a $\$ 32,500$ outlay.

Choosing by PIs for SB

Project	ICO	IRR	NPV		PI
F	$\$ 15,000$	28%	$\$ 21,000$	2.40	
B	5,000	25	6,500	2.30	
C	5,000	37	5,500	2.10	
D	7,500	20	5,000	1.67	
G	17,500	19	7,500	1.43	

Projects F, B, C, and D have the four largest PIs.
The resulting increase in shareholder wealth is $\$ 38,000$ with a $\$ 32,500$ outlay.

Summary of Comparison

Method Projects Accepted Value Added

PI F, B, C, and D

F and G
C, F, and E
\$38,000
\$28,500 \$27,000

PI generates the greatest increase in shareholder wealth when a limited capital budget exists for a single period.

Post-Completion Audit

Post-completion Audit

A formal comparison of the actual costs and benefits of a project with original estimates.

- Identify any project weaknesses
- Develop a possible set of corrective actions
- Provide appropriate feedback

Result: Making better future decisions!

Let us assume the following cash flow pattern for a project for Years 0 to 4:
$-\$ 100+\$ 100+\$ 900-\$ 1,000$
How many potential IRRs could this project have?

Two!! There are as many potential IRRs as there are sign changes.

NPV Profile =- Multiple IRRs

Risk and Managerial Options in Capital Budgeting

Risk and Managerial Options in Capital Budgeting

The Problem of Project Risk
Total Project Risk

- Contribution to Total Firm Risk: FirmPortfolio Approach
- Managerial Options

An Iflustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL A

State
Deep Recession
Mild Recession
Normal
Minor Boom
Major Boom

rJODEDJJJTY

.25
40
25
.05

Cashrflow
\$ -3,000
1,000
5,000
9,000
13,000

Summary of Pronosal_A

The standard deviation $=$
SQRT
$(14,400,000)=\$ 3,795$
The expected cash flow $=\$ 5,000$

An Illustration of Total Risk (Discrete Distribution)

ANNUAL CASH FLOWS: YEAR 1 PROPOSAL B

State
Deep Recession . 05
Mild Recession
Normal
Minor Boom
Major Boom

ค~1
rIUDODDIULy
.25
.40
.25
.05
\$ $-1,000$
2,000
5,000
8,000
11,000

Summary of Pronncal B

The standard deviation = SQRT $(8,100,000)=\$ 2,8266$

The expected cash flow $=\$ 5,000$

The standard deviation of
Proposal $B<$ Proposal A.
($\$ 2,846<\$ 3,795$)

Total Proiect Risk

Projects have risk that may change from period to period.

Projects are more likely to have continuous, rather than discrete distributions.

Probability Tree Approach

A graphic or tabular approach for organizing the possible cash-flow streams generated by an investment. The presentation resembles the branches of a tree. Each complete branch represents one possible cash-flow sequence.

Probability Tree Approach

Basket Wonders is examining a project that will have an initial cost today of $\$ 900$. Uncertainty surrounding the first year cash flows creates three possible cash-flow scenarios in Year 1.

Probability Tree Approach

Node 1: 20% chance of a \$1,200 cash-flow.

Node 2: 60% chance of a \$450 cash-flow.

Node 3: 20% chance of a $\$ 600$ cash-flow.

Probability Tree Approach

Joint Probabilities [P(1,2)]

Project NPV Based on Probability Tree Usage

The probability tree accounts for the distribution of cash flows. Therefore, discount all cash flows at only the risk-free rate of return.

$\overline{\mathrm{NPV}}=\sum_{i=1}^{2}\left(\mathrm{NPV}_{\mathrm{i}}\right)\left(P_{\mathrm{j}}\right)$

The NPV for branch iof the probability tree for two years of cash flows is

$$
\begin{aligned}
N P V_{i} & =\frac{C F_{1}}{\left(1+R_{f}\right)^{1}+} \frac{C F_{2}}{\left(1+R_{f}\right)^{2}} \\
& =I C O
\end{aligned}
$$

NPV for Each Cash-Flow Stream at 5\% Risk-Free Rate

Calculating the Expected Net Present Value (NPV)

Branch		$\mathrm{P}(1,2)$	$\mathrm{IIPV}_{\mathrm{i}} * \underset{+}{\mathrm{P}}(1,2)$
Branch 2	\$ 1,331.29	. 12	\$159.75
Branch 3	\$ 1,059.18	. 06	\$ 63.55
Branch 4	\$ 344.90	. 21	\$ 72.43
Branch 5	\$ 72.79	. 24	\$ 17.47
Branch 6	-\$ 199.32	. 02	-\$ 20.36
Branch 7	-\$ 1,017.91	. 10	-\$156.21
Branch 8		. 08	-\$168.51
Branch 9	-\$ 2,106.35		
Expected Net Present Vajue =-is $17.0 \cdot$			

Summary of the Decision Tree Analysis

The standard deviation $=$
SQRT
($\$ 1,031,800$) = \$1,015.78
The expected NPV $=-\$ \quad 17.01$

Simulation Approach

An approach that allows us to test the possible results of an investment proposal before it is accepted. Testing is based on a model coupled with probabilistic information.

Simulation Approach

Each proposal will generate an internal rate of return. The process of generating many, many simulations results in a large set of internal rates of return. The distribution might look like the following:

